:py:mod:`MomentGauge.Statistic.PolyStatistics` ============================================== .. py:module:: MomentGauge.Statistic.PolyStatistics Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: MomentGauge.Statistic.PolyStatistics.PolyStatistics MomentGauge.Statistic.PolyStatistics.Maxwellian_1D_stats MomentGauge.Statistic.PolyStatistics.ESBGK_1D_stats MomentGauge.Statistic.PolyStatistics.M35_1D_stats MomentGauge.Statistic.PolyStatistics.M35_P2_1D_stats .. py:class:: PolyStatistics The base class for store pre-defined polynomial statistics. .. attribute:: suff_stats a list of statistics [:math:`\phi_i,i=0,\cdots,M`], in which each :math:`\phi_i` is a polynomial function :math:`\phi_i` ( **u** , :math:`*` **gauge_paras** ) whose **Parameters**: **u** : float array of shape (3) - The 3D sample vector :math:`*` **gauge_paras** : - Arbitrary many extra parameters. The :math:`*` refers to the unpacking operator in python. **Returns**: float -- the moment value The lengh of the list may vary. Its first element must satisfy :math:`\phi_0` ( **u** , :math:`*` **gauge_paras** ) = 1 :type: None .. py:class:: Maxwellian_1D_stats Bases: :py:obj:`PolyStatistics` The polynomial statistics for 1D Maxwellian distribution. .. attribute:: suff_stats a list of moment functions [:math:`\phi_i,i=0,\cdots,2`] in which each :math:`\phi_i` is a polynomial function :math:`\phi_i` ( **u** ) whose **Parameters**: **u** : float array of shape (3) - The 3D sample vector (:math:`u_x`, :math:`u_y`, :math:`u_z`) **Returns**: float -- the moment value Specifically, :math:`\phi_0` (**u** ) = 1. :math:`\phi_1` (**u** ) = :math:`u_x` :math:`\phi_2` (**u** ) = :math:`u_x^2 + u_y^2 + u_z^2`. :type: list of length (3) .. py:class:: ESBGK_1D_stats Bases: :py:obj:`PolyStatistics` The polynomial statistics for 1D ESBGK distribution. .. attribute:: suff_stats a list of moment functions [:math:`\phi_i,i=0,\cdots,3`] in which each :math:`\phi_i` is a polynomial function :math:`\phi_i` ( **u** ) whose **Parameters**: **u** : float array of shape (3) - The 3D sample vector (:math:`u_x`, :math:`u_y`, :math:`u_z`) **Returns**: float -- the moment value Specifically, :math:`\phi_0` (**u** ) = 1. :math:`\phi_1` (**u** ) = :math:`u_x` :math:`\phi_2` (**u** ) = :math:`u_x^2` :math:`\phi_2` (**u** ) = :math:`u_y^2 + u_z^2`. :type: list of length (4) .. py:class:: M35_1D_stats Bases: :py:obj:`PolyStatistics` The 1D version of polynomial statistics for 35 moments. .. attribute:: suff_stats a list of moment functions [:math:`\phi_i,i=0,\cdots,8`] in which each :math:`\phi_i` is a polynomial function :math:`\phi_i` ( **u** ) whose **Parameters**: **u** : float array of shape (3) - The 3D sample vector (:math:`u_x`, :math:`u_y`, :math:`u_z`) **Returns**: float -- the moment value Specifically, .. math:: :nowrap: \begin{equation} \{\phi_i,i=0,\cdots,8\} = \left\{1, {u}_x,\frac{ {u}_x^2-1}{\sqrt{2}},\frac{ {u}_r^2}{2} -1,\frac{ {u}_x^3-3 {u}_x}{\sqrt{6}},\frac{ {u}_x^4-6 {u}_x^2+3}{2 \sqrt{6}},\frac{1}{8} {u}_r^4- {u}_r^2+1,\frac{1}{2} {u}_x ( {u}_r^2-1),\frac{( {u}_x^2 -1)( {u}_r^2-2)}{2 \sqrt{2}}\right\} \end{equation} in which :math:`u_r = \sqrt{u_y^2+u_z^2}` :type: list of length (9) .. py:class:: M35_P2_1D_stats Bases: :py:obj:`PolyStatistics` The 1D version of polynomial statistics for 35 moments with . .. attribute:: suff_stats a list of moment functions [:math:`\phi_i,i=0,\cdots,10`] in which each :math:`\phi_i` is a polynomial function :math:`\phi_i` ( **u** ) whose **Parameters**: **u** : float array of shape (3) - The 3D sample vector (:math:`u_x`, :math:`u_y`, :math:`u_z`) **Returns**: float -- the moment value Specifically, .. math:: :nowrap: \begin{equation} \{\phi_i,i=0,\cdots,10\} = \left\{1, {u}_x,\frac{ {u}_x^2-1}{\sqrt{2}},\frac{ {u}_r^2}{2} -1,\frac{ {u}_x^3-3 {u}_x}{\sqrt{6}},\frac{ {u}_x^4-6 {u}_x^2+3}{2 \sqrt{6}},\frac{1}{8} {u}_r^4- {u}_r^2+1,\frac{1}{2} {u}_x ( {u}_r^2-1),\frac{( {u}_x^2 -1)( {u}_r^2-2)}{2 \sqrt{2}} , \frac{u_x^5}{2 \sqrt{30}}-\sqrt{\frac{5}{6}} u_x^3+\frac{1}{2} \sqrt{\frac{15}{2}} u_x, \frac{u_x^6}{12 \sqrt{5}}-\frac{\sqrt{5} u_x^4}{4}+\frac{3 \sqrt{5} u_x^2}{4}-\frac{\sqrt{5}}{4} \right\} \end{equation} in which :math:`u_r = \sqrt{u_y^2+u_z^2}` :type: list of length (11)